Package index
-
apply_thresholds() - Apply other thresholds to DE results
-
detect_outliers_POMA() - Outlier detection via POMA R Package
-
eigenMSNorm() - EigenMS Normalization
-
export_data() - Export the SummarizedExperiment object, the meta data, and the normalized data.
-
extract_consensus_DE_candidates() - Extract consensus DE candidates
-
extract_limma_DE() - Extract the DE results from eBayes fit of perform_limma function.
-
filter_out_NA_proteins_by_threshold() - Filter proteins based on their NA pattern using a specific threshold
-
filter_out_complete_NA_proteins() - Remove proteins with NAs in all samples
-
filter_out_proteins_by_ID() - Remove proteins by their ID
-
filter_out_proteins_by_value() - Remove proteins by value in specific column
-
get_NA_overview() - Function returning some values on the numbers of NA in the data
-
get_complete_dt() - Function to get a long data table of all intensities of all kind of normalization
-
get_complete_pca_dt() - Function to get a long data table of all PCA1 and PCA2 values of all kind of normalization
-
get_normalization_methods() - Function to return available normalization methods' identifier names
-
get_overview_DE() - Get overview table of DE results
-
get_proteins_by_value() - Get proteins by value in specific column
-
get_spiked_stats_DE() - Get performance metrics of DE results of spike-in data set.
-
globalIntNorm() - Total Intensity Normalization
-
globalMeanNorm() - Total Intensity Normalization Using the Mean for the Calculation of Scaling Factors
-
globalMedianNorm() - Total Intensity Normalization Using the Median for the Calculation of Scaling Factors
-
impute_se() - Method to impute SummarizedExperiment. This method performs a mixed imputation on the proteins. It uses a k-nearest neighbor imputation for proteins with missing values at random (MAR) and imputes missing values by random draws from a left-shifted Gaussian distribution for proteins with missing values not at random (MNAR).
-
irsNorm() - Internal Reference Scaling Normalization
-
limmaNorm() - limma::removeBatchEffects (limBE)
-
load_data() - Load real-world proteomics data into a SummarizedExperiment
-
load_spike_data() - Load spike-in proteomics data into a SummarizedExperiment
-
loessCycNorm() - Cyclic Loess Normalization of limma
-
loessFNorm() - Fast Loess Normalization of limma
-
meanNorm() - Mean Normalization
-
medianAbsDevNorm() - Median Absolute Deviation Normalization
-
medianNorm() - Median Normalization
-
normalize_se() - Normalize SummarizedExperiment object using single normalization methods or specified combinations of normalization methods
-
normalize_se_combination() - Normalize SummarizedExperiment object using combinations of normalization methods
-
normalize_se_single() - Normalize SummarizedExperiment object using different normalization methods
-
normicsNorm() - Normics Normalization (Normics using VSN or using Median)
-
perform_DEqMS() - Perform DEqMS
-
perform_ROTS() - Performing ROTS
-
perform_limma() - Fitting a linear model using limma
-
plot_NA_density() - Plot the intensity distribution of proteins with and without NAs
-
plot_NA_frequency() - Plot protein identification overlap (x = identified in number of Samples, y=number of proteins)
-
plot_NA_heatmap() - Plot heatmap of the NA pattern
-
plot_PCA() - PCA plot of the normalized data
-
plot_ROC_AUC_spiked() - Plot ROC curve and barplot of AUC values for each method for a specific comparion or for all comparisons
-
plot_TP_FP_spiked_bar() - Barplot of true and false positives for specific comparisons and normalization methods
-
plot_TP_FP_spiked_box() - Boxplot of true and false positives for specific comparisons and normalization methods
-
plot_TP_FP_spiked_scatter() - Scatterplot of true positives and false positives (median with errorbars as Q1, and Q3) for all comparisons
-
plot_boxplots() - Plot the distributions of the normalized data as boxplots
-
plot_condition_overview() - Barplot showing the number of samples per condition
-
plot_densities() - Plot the densities of the normalized data
-
plot_fold_changes_spiked() - Boxplot of log fold changes of spike-in and background proteins for specific normalization methods and comparisons. The ground truth (calculated based on the concentrations of the spike-ins) is shown as a horizontal line.
-
plot_heatmap() - Plot a heatmap of the sample intensities with optional column annotations for a selection of normalization methods
-
plot_heatmap_DE() - Heatmap of DE results
-
plot_histogram_spiked() - Plot histogram of the spike-in and background protein intensities per condition.
-
plot_identified_spiked_proteins() - Plot number of identified spike-in proteins per sample.
-
plot_intersection_enrichment() - Intersect top N enrichment terms per normalization method
-
plot_intragroup_PCV() - Plot intragroup pooled coefficient of variation (PCV) of the normalized data
-
plot_intragroup_PEV() - Plot intragroup pooled estimate of variance (PEV) of the normalized data
-
plot_intragroup_PMAD() - Plot intragroup pooled median absolute deviation (PMAD) of the normalized data
-
plot_intragroup_correlation() - Plot intragroup correlation of the normalized data
-
plot_jaccard_heatmap() - Jaccard similarity heatmap of DE proteins of the different normalization methods
-
plot_logFC_thresholds_spiked() - Line plot of number of true and false positives when applying different logFC thresholds
-
plot_markers_boxplots() - Boxplots of intensities of specific markers
-
plot_nr_prot_samples() - Plot number of non-zero proteins per sample
-
plot_overview_DE_bar() - Overview plots of DE results
-
plot_overview_DE_tile() - Overview heatmap plot of DE results
-
plot_profiles_spiked() - Plot profiles of the spike-in and background proteins using the log2 average protein intensities as a function of the different concentrations.
-
plot_pvalues_spiked() - Boxplot of p-values of spike-in and background proteins for specific normalization methods and comparisons. The ground truth (calculated based on the concentrations of the spike-ins) is shown as a horizontal line.
-
plot_stats_spiked_heatmap() - Heatmap of performance metrics for spike-in data sets
-
plot_tot_int_samples() - Plot total protein intensity per sample
-
plot_upset() - Create an UpSet Plot from SummarizedExperiment Data
-
plot_upset_DE() - Upset plots of DE results of the different normalization methods
-
plot_volcano_DE() - Volcano plots of DE results
-
quantileNorm() - Quantile Normalization of preprocessCore package.
-
readPRONE_example() - Helper function to read example data
-
remove_POMA_outliers() - Remove outliers samples detected by the detect_outliers_POMA function
-
remove_assays_from_SE() - Remove normalization assays from a SummarizedExperiment object
-
remove_reference_samples() - Remove reference samples of SummarizedExperiment object (reference samples specified during loading)
-
remove_samples_manually() - Remove samples with specific value in column manually
-
rlrMACycNorm() - Cyclic Linear Regression Normalization on MA Transformed Data
-
rlrMANorm() - Linear Regression Normalization on MA Transformed Data
-
rlrNorm() - Robust Linear Regression Normalization of NormalyzerDE.
-
robnormNorm() - RobNorm Normalization
-
run_DE() - Run DE analysis of a selection of normalized data sets
-
run_DE_single() - Run DE analysis on a single normalized data set
-
specify_comparisons() - Create vector of comparisons for DE analysis (either by single condition (sep = NULL) or by combined condition)
-
spectraCounteBayes_DEqMS() - Additional function of the DEqMS package
-
spike_in_de_res - Example data.table of DE results of a spike-in proteomics data set
-
spike_in_se - Example SummarizedExperiment of a spike-in proteomics data set
-
subset_SE_by_norm() - Subset SummarizedExperiment object by normalization assays
-
tmmNorm() - Weighted Trimmed Mean of M Values (TMM) Normalization of edgeR package.
-
tuberculosis_TMT_de_res - Example data.table of DE results of a real-world proteomics data set
-
tuberculosis_TMT_se - Example SummarizedExperiment of a real-world proteomics data set
-
vsnNorm() - Variance Stabilization Normalization of limma package.