Package index
-
apply_thresholds()
- Apply other thresholds to DE results
-
detect_outliers_POMA()
- Outlier detection via POMA R Package
-
eigenMSNorm()
- EigenMS Normalization
-
export_data()
- Export the SummarizedExperiment object, the meta data, and the normalized data.
-
extract_consensus_DE_candidates()
- Extract consensus DE candidates
-
extract_limma_DE()
- Extract the DE results from eBayes fit of perform_limma function.
-
filter_out_NA_proteins_by_threshold()
- Filter proteins based on their NA pattern using a specific threshold
-
filter_out_complete_NA_proteins()
- Remove proteins with NAs in all samples
-
filter_out_proteins_by_ID()
- Remove proteins by their ID
-
filter_out_proteins_by_value()
- Remove proteins by value in specific column
-
get_NA_overview()
- Function returning some values on the numbers of NA in the data
-
get_complete_dt()
- Function to get a long data table of all intensities of all kind of normalization
-
get_complete_pca_dt()
- Function to get a long data table of all PCA1 and PCA2 values of all kind of normalization
-
get_normalization_methods()
- Function to return available normalization methods' identifier names
-
get_overview_DE()
- Get overview table of DE results
-
get_proteins_by_value()
- Get proteins by value in specific column
-
get_spiked_stats_DE()
- Get performance metrics of DE results of spike-in data set.
-
globalIntNorm()
- Total Intensity Normalization
-
globalMeanNorm()
- Total Intensity Normalization Using the Mean for the Calculation of Scaling Factors
-
globalMedianNorm()
- Total Intensity Normalization Using the Median for the Calculation of Scaling Factors
-
impute_se()
- Method to impute SummarizedExperiment. This method performs a mixed imputation on the proteins. It uses a k-nearest neighbor imputation for proteins with missing values at random (MAR) and imputes missing values by random draws from a left-shifted Gaussian distribution for proteins with missing values not at random (MNAR).
-
irsNorm()
- Internal Reference Scaling Normalization
-
limmaNorm()
- limma::removeBatchEffects (limBE)
-
load_data()
- Load real-world proteomics data into a SummarizedExperiment
-
load_spike_data()
- Load spike-in proteomics data into a SummarizedExperiment
-
loessCycNorm()
- Cyclic Loess Normalization of limma
-
loessFNorm()
- Fast Loess Normalization of limma
-
meanNorm()
- Mean Normalization
-
medianAbsDevNorm()
- Median Absolute Deviation Normalization
-
medianNorm()
- Median Normalization
-
normalize_se()
- Normalize SummarizedExperiment object using single normalization methods or specified combinations of normalization methods
-
normalize_se_combination()
- Normalize SummarizedExperiment object using combinations of normalization methods
-
normalize_se_single()
- Normalize SummarizedExperiment object using different normalization methods
-
normicsNorm()
- Normics Normalization (Normics using VSN or using Median)
-
perform_DEqMS()
- Perform DEqMS
-
perform_ROTS()
- Performing ROTS
-
perform_limma()
- Fitting a linear model using limma
-
plot_NA_density()
- Plot the intensity distribution of proteins with and without NAs
-
plot_NA_frequency()
- Plot protein identification overlap (x = identified in number of Samples, y=number of proteins)
-
plot_NA_heatmap()
- Plot heatmap of the NA pattern
-
plot_PCA()
- PCA plot of the normalized data
-
plot_ROC_AUC_spiked()
- Plot ROC curve and barplot of AUC values for each method for a specific comparion or for all comparisons
-
plot_TP_FP_spiked_bar()
- Barplot of true and false positives for specific comparisons and normalization methods
-
plot_TP_FP_spiked_box()
- Boxplot of true and false positives for specific comparisons and normalization methods
-
plot_TP_FP_spiked_scatter()
- Scatterplot of true positives and false positives (median with errorbars as Q1, and Q3) for all comparisons
-
plot_boxplots()
- Plot the distributions of the normalized data as boxplots
-
plot_condition_overview()
- Barplot showing the number of samples per condition
-
plot_densities()
- Plot the densities of the normalized data
-
plot_fold_changes_spiked()
- Boxplot of log fold changes of spike-in and background proteins for specific normalization methods and comparisons. The ground truth (calculated based on the concentrations of the spike-ins) is shown as a horizontal line.
-
plot_heatmap()
- Plot a heatmap of the sample intensities with optional column annotations for a selection of normalization methods
-
plot_heatmap_DE()
- Heatmap of DE results
-
plot_histogram_spiked()
- Plot histogram of the spike-in and background protein intensities per condition.
-
plot_identified_spiked_proteins()
- Plot number of identified spike-in proteins per sample.
-
plot_intersection_enrichment()
- Intersect top N enrichment terms per normalization method
-
plot_intragroup_PCV()
- Plot intragroup pooled coefficient of variation (PCV) of the normalized data
-
plot_intragroup_PEV()
- Plot intragroup pooled estimate of variance (PEV) of the normalized data
-
plot_intragroup_PMAD()
- Plot intragroup pooled median absolute deviation (PMAD) of the normalized data
-
plot_intragroup_correlation()
- Plot intragroup correlation of the normalized data
-
plot_jaccard_heatmap()
- Jaccard similarity heatmap of DE proteins of the different normalization methods
-
plot_logFC_thresholds_spiked()
- Line plot of number of true and false positives when applying different logFC thresholds
-
plot_markers_boxplots()
- Boxplots of intensities of specific markers
-
plot_nr_prot_samples()
- Plot number of non-zero proteins per sample
-
plot_overview_DE_bar()
- Overview plots of DE results
-
plot_overview_DE_tile()
- Overview heatmap plot of DE results
-
plot_profiles_spiked()
- Plot profiles of the spike-in and background proteins using the log2 average protein intensities as a function of the different concentrations.
-
plot_pvalues_spiked()
- Boxplot of p-values of spike-in and background proteins for specific normalization methods and comparisons. The ground truth (calculated based on the concentrations of the spike-ins) is shown as a horizontal line.
-
plot_stats_spiked_heatmap()
- Heatmap of performance metrics for spike-in data sets
-
plot_tot_int_samples()
- Plot total protein intensity per sample
-
plot_upset()
- Create an UpSet Plot from SummarizedExperiment Data
-
plot_upset_DE()
- Upset plots of DE results of the different normalization methods
-
plot_volcano_DE()
- Volcano plots of DE results
-
quantileNorm()
- Quantile Normalization of preprocessCore package.
-
readPRONE_example()
- Helper function to read example data
-
remove_POMA_outliers()
- Remove outliers samples detected by the detect_outliers_POMA function
-
remove_assays_from_SE()
- Remove normalization assays from a SummarizedExperiment object
-
remove_reference_samples()
- Remove reference samples of SummarizedExperiment object (reference samples specified during loading)
-
remove_samples_manually()
- Remove samples with specific value in column manually
-
rlrMACycNorm()
- Cyclic Linear Regression Normalization on MA Transformed Data
-
rlrMANorm()
- Linear Regression Normalization on MA Transformed Data
-
rlrNorm()
- Robust Linear Regression Normalization of NormalyzerDE.
-
robnormNorm()
- RobNorm Normalization
-
run_DE()
- Run DE analysis of a selection of normalized data sets
-
run_DE_single()
- Run DE analysis on a single normalized data set
-
specify_comparisons()
- Create vector of comparisons for DE analysis (either by single condition (sep = NULL) or by combined condition)
-
spectraCounteBayes_DEqMS()
- Additional function of the DEqMS package
-
spike_in_de_res
- Example data.table of DE results of a spike-in proteomics data set
-
spike_in_se
- Example SummarizedExperiment of a spike-in proteomics data set
-
subset_SE_by_norm()
- Subset SummarizedExperiment object by normalization assays
-
tmmNorm()
- Weighted Trimmed Mean of M Values (TMM) Normalization of edgeR package.
-
tuberculosis_TMT_de_res
- Example data.table of DE results of a real-world proteomics data set
-
tuberculosis_TMT_se
- Example SummarizedExperiment of a real-world proteomics data set
-
vsnNorm()
- Variance Stabilization Normalization of limma package.